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Figure 1.
An expeditious approach to (±)-aphanorphine has been established using readily available starting mate-
rials. The present synthesis relies on the direct assembly between N-methylpyrrolidone (NMP) and
2-bromoanisaldehyde, which takes place through Et3B/air-mediated transformation of the a-nitrogen-
substituted sp3C–H bond, and features a new design concept for the synthesis of the tricyclic 3-benzaze-
pine skeleton.

� 2008 Elsevier Ltd. All rights reserved.
(�)-Aphanorphine (1), a unique tricyclic 3-benzazepine alkaloid
isolated from the freshwater blue-green alga Aphanizomenon flos-
aquae, has attracted considerable attention over the past two dec-
ades because of the biological interest stemming from its structural
similarity to benzomorphane analgesics such as pentazocine (Fig.
1).1 Accordingly, many synthetic approaches to this natural prod-
uct have appeared in the literature, showing various concepts for
the construction of the tricyclic 3-benzazepine skeleton.2

The prospect that aphanorphine (1) serves as a potential lead
compound for the discovery of new analgesics has prompted us
to devise an expeditious route to this class of compounds, which,
hopefully, would be applicable to the synthesis of a wide
range of tricyclic 3-benzazepine derivatives. In this context, we
envisaged that the Et3B/air-mediated hydroxyalkylation reaction
of N-methylpyrrolidone (NMP) with aldehyde 4, recently devised
in this laboratory,3,4 would provide 5-benzylated pyrrolidinone 3
that constitutes an ideal intermediate for aphanorphine (1) synthe-
sis (Scheme 1). Recent reports from the laboratories of Ishibashi2n,q

and Gallagher,2v,z who have shown that the quaternary stereocen-
ter of (�)-aphanorphine (1) could be constructed by the radical
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cyclization of alkenylated pyrrolidinone scaffolds, suggested the
relevance of our strategic interpretations.

We describe here a new concise approach to (±)-aphanorphine
(1) that features two strategic radical C–C bond-forming reactions
on NMP, involving sp3C–H hydroxyalkylation and Bu3SnH-medi-
ated cyclization, the latter of which has been employed as a key
bond-forming reaction in Gallagher’s synthesis.2v,z

Our synthesis started with readily available NMP (5), employing
radical sp3C–H bond transformation chemistry (Scheme 2).5–7

Thus, lactam 5 was directly hydroxybenzylated with 2-bromoanis-
aldehyde (4)8 using Et3B/air9 at room temperature to afford desired
compound 3a/b as an inseparable diastereomixture, slightly favor-
ing the production of erythro-type adduct 3a, along with regio-
isomer 3c in 64% combined yield (3a:3b:3c = 5:3:1) (Fig. 2).10

The hydroxyalkylation took place predominantly at the methylene
position alpha to the nitrogen atom, thereby enabling the direct
installation of the arylmethyl motif at the 5-position of NMP (5).

The benzylic hydroxyl group of each of compounds 3a/b was
easily removed by treatment with Et3SiH in the presence of
BF3�OEt2 to provide 5-benzylated pyrrolidone 6 in 94% yield.
Although the methylenation of compound 6, in an attempt to deli-
ver key 3-methylenepyrrolidone 2, was unfruitful under various
conditions,11 pyrrolidone 6 could eventually be converted in three
steps into pyrrolidone 2 via the following sequence: compound 6
was initially subjected to LiHMDS and then to diethyl carbonate
to effect ethoxycarbonylation, giving ester 7 in 85% yield. Reduc-
tion of ester 7 with NaBH4 in the presence of CaCl2 provided
alcohol 8 (95%), which, by subsequent dehydration reaction using
N,N0-dicyclohexylcarbodiimide (DCC) and CuI in refluxing chloro-
benzene, was efficiently transformed into olefin 2 (84%).12 Since
olefin 2 has already been utilized as an intermediate in Gallagher’s
6 6879 8210; fax: +81 6 6879 8214 (T.T.).
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Scheme 2. Total synthesis of (±)-aphanorphine (1).
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Figure 2. Hydroxyalkylation products.
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Scheme 1. Bridgehead annulation approach to (±)-aphanorphine (1) using two
radical C–C bond-forming reactions.
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total synthesis, this constitutes the formal synthesis of (±)-apha-
norphine (1).2v,z Following a slight modification of Gallagher’s pro-
tocol for the radical annulation reaction, 3-methylenepyrrolidone 2
was further converted into tricyclic lactam 9: a diluted solution of
pyrrolidone 2, Bu3SnH, and 1,10-azobis(cyclohexylcarbonitrile)
(ACCN)13 in toluene was heated at reflux for a short period (ca.
5 min) to yield annulated compound 9 (61%) accompanied by
isomerized internal alkene 10 (34%). The previously reported
two-step transformation process from this compound 9, involving
LAH reduction and BBr3-mediated demethylation, enabled us to ac-
cess final target molecule 1. The 1H NMR, 13C NMR, IR, and analyt-
ical data obtained for compounds 2, 9, and 1 were in full agreement
with those reported in the literature.14

In conclusion, we have established a new expeditious route to
(±)-aphanorphine (1), which relies on the radical-based direct
assembly between N-methylpyrrolidone (NMP) (5) and 2-bromo-
anisaldehyde (4). The present synthesis provides a new concept
for the construction of the tricyclic 3-benzazepine skeleton from
readily available NMP, which would be applicable to the short syn-
theses of a diverse array of aphanorphine derivatives simply by
switching starting aldehydes. Further work along this line, which
would allow us to discover new potent analgesics, is avidly being
undertaken in this laboratory.
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41.9, 42.8, 44.3, 64.0, 72.6, 110.9, 114.6, 124.8, 131.3, 148.1, 156.7.
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